基于膜的技术已经得到了广泛的发展,并在解决全球水资源短缺和污染的挑战中发挥着关键作用。然而,传统的膜制造方法往往在设计灵活性、使用寿命和膜污染方面受到限制。近年来,3D打印技术已成为膜和模块设计创新的一种有前途的解决方案,然而,由于各种因素的限制,目前并没有充分发挥3D打印在膜及其相关组件研制方面的优势。近期,3D打印工作室与清华大学团队合作展望了3D打印在基于膜相关技术的水处理研究中的潜力和挑战,相关成果以观点形式发表于ACS ES&T Water。
查看详情随着世界人口的增长和人们生活水平的提高,全球肉类消费需求急剧增加,导致以畜牧为主的传统肉类生产方式造成了严重的生态环境问题,包括土地、水、能源的大量消耗,温室气体及其他环境污染物的排放等。人造肉被认为是动物肉类的可行替代品,然而,目前的人造肉产品还无法满足消费者的需求。近期,3D打印工作室探讨了人造肉潜在的生态可持续性,回顾了已有的人造肉生产方式,重点对3D生物打印人造肉相关研究进行了全面总结,并展望了3D生物打印人造肉的发展趋势,强调了该领域未来的关键挑战。相关成果以综述形式发表于Food and Bioprocess Technology。
查看详情开发高性能的环境分析设备对于评估环境污染物的潜在风险至关重要。然而,在传统加工技术的基础上开发微型化、便携性和高灵敏度的环境分析设备仍具有挑战性。近年来,3D打印技术的普及为解决现有环境分析难题提供了机遇。3D打印工作室近期总结了3D打印在环境分析领域的最新进展(2015-2022年),全面回顾了3D打印在环境分析流程各方面的最新进展,包括但不限于样品采集、预处理、分离和检测,强调了3D打印设备在改善环境分析方面的重要性,并对该领域所面临的挑战和机遇进行了展望。研究成果近期以综述形式发表于Analytica Chimica Acta。
查看详情全球气候变暖严重威胁着人类的生存和可持续发展,是当前人类面临的重大全球性挑战之一。大幅减少化石燃料的使用被视为减少温室气体排放的主要举措。然而,化石燃料是最主要的能源,当前的减排政策不可能在不牺牲经济发展和人民生活的情况下实现碳中和目标。3D打印作为一种环境友好的增材制造技术,能够有效推动能源结构调整和产业升级,但其在碳中和方面的潜力还没有引起足够的关注。3D打印工作室探讨了3D打印技术在制造业、建筑、能源、畜牧业和碳捕获与封存等关键行业促进碳中和的潜力。研究成果近期发表于Journal of Environmental Sciences。
查看详情清华大学黄霞教授团队在水处理进水格网结构和性能优化的研究中取得新进展。该研究利用数值模拟和生物污染实验探究了16种具有不同几何参数和通道孔隙率的进水隔网在膜生物污染中的关键作用。实验结果表明,水力学性能和抗污染性能对隔网直径和隔网厚度的变化更为敏感,而进水通道孔隙率在生物污垢发展中发挥了关键作用,当通道孔隙率在0.85左右时,进水隔网具有最佳的水力学性能和抗污染性能。3D打印工作室协作完成了不同进水隔网的加工制造工作。相关成果近期发表于Journal of Membrane Science。
查看详情3D打印工作室在打印材料的功能性研发和应用方面取得新进展。工作室利用3D光固化打印技术研制了含有TiO2纳米颗粒的宏观结构用于直接吸附去除水中的砷(As)污染物。探讨了3D打印过程、TiO2纳米颗粒的掺杂浓度、TiO2纳米颗粒的尺寸等对吸附效率的影响,并对吸附动力学和吸附等温线进行了探究。结果表明,得益于3D打印技术,作为吸附剂的TiO2纳米颗粒被均匀的固定在宏观结构上,从而易于实际操作,有效避免了吸附剂的流失和潜在的二次污染。3D打印的吸附结构可以重复使用10次以上,并可以直接用于地下水样品中砷的吸附去除。研究成果近期发表于Science of the Total Environment.
查看详情3D打印工作室在3D打印过程的毒理学效应和健康风险研究取得新进展。3D打印过程中会释放细颗粒物(PM2.5)和挥发性有机化合物(VOCs)等有害物质。了解这些有害物质的排放特征和毒理学效应对3D打印的健康风险评估和安全应用具有重要意义。本综述全面回顾了3D打印工作场所和实验室环境模拟测试过程中PM2.5和VOCs的排放特征、排放水平以及体内外毒性评估结果,并为3D打印机用户提供了相应的安全操作指南。研究成果近期发表于Environmental Science & Technology Letters。
查看详情新冠疫情的突然爆发导致依赖于全球供应链的生产加工体系受到极大冲击,个人防护及医疗用品在疫情初期出现严重短缺,造成部分地区的医疗系统接连崩溃。3D打印工作室提出观点,认为3D打印技术以其快速制造、分散分布、高设计自由度及低门槛的优势,在快速应对突发性公共卫生事件中拥有巨大潜力。研究成果近期发表于The Innovation。
查看详情重点实验室江桂斌课题组在空气中磁性纳米颗粒的人体暴露风险研究中取得新进展。本研究报道了城市大气中磁性纳米颗粒的大量存在和高分辨化学多指纹。利用3D打印技术研制了一种循环磁性萃取系统用于大气样品中磁性纳米颗粒的选择性萃取和纯化,并建立了一种高效筛选和精确定量空气中磁性纳米颗粒的方法;该研究鉴别并估算了主要排放源对空气中磁性纳米颗粒的贡献,并评估了空气中磁性纳米颗粒的人体暴露风险。研究成果近期发表于Environmental Science & Technology。
查看详情3D打印工作室在3D打印在环境样品前处理领域的应用取得新进展。本研究结合3D打印技术,基于不同的样品前处理步骤,设计了一套模块化样品纯化系统用于小体积生物样品的多步骤和高通量纯化,并用于MALDI-TOF MS分析。该系统具有较高的灵敏度、重现性和回收率。通过模块化的设计,该系统可增加定制的功能模块并不断扩展,以实现更多的功能和更广泛的应用。研究成果近期以封底文章发表于Chemical Communications。
查看详情3D打印工作室在金属蛋白质质谱分析的研究中取得新进展。本研究利用3D打印技术研发了用于金属蛋白分析的水平柱状凝胶电泳装置,该装置可以实现蛋白的高效分离,且通过设计的洗脱装置可以与电感耦合等离子体质谱(ICP MS)进行联用对蛋白进行在线分离,并对其中的金属元素进行实时检测。研究成果近期发表于Talanta。
查看详情3D打印工作室在打印材料的功能性研发和应用方面取得新进展。工作室使用3D打印利用掺杂石墨烯的树脂轻松制造了用于激光解吸/电离质谱分析的靶板。掺杂的石墨烯被固定于靶板上,可以吸收激光并促进电离,从而使靶板无需添加基质即可直接分析样品,整个靶板的背景干扰低,重现性较好,成本低,且可重复使用超过400次。研究成果近期以封底文章发表于Chemical Communications。
查看详情